#"500.0 mL"# of solution contains #0.750# millimoles of #"Co"("NO"_3)_2#, #125.0# millimoles of #"NH"_3#, and #100.0# millimoles of ethylenediamine. What is the equilibrium concentration of #"Co"^(2+)# for this complexation reaction?
The #K_f# for the formation of #["Co"("NH"_3)_6]^(2+)# is #7.7 xx 10^4# . The #K_f# for the formation of #["Co"("en")_3]^(2+)# is #8.7 xx 10^13# .
The
1 Answer
Well, it ought to be close to zero...
I got
The initial concentrations are:
#["Co"^(2+)]_i = 0.750/500.0 "mmol"/"mL" = "0.00150 M"#
#["NH"_3]_i = 125.0/500.0 "mmol"/"mL" = "0.2500 M"#
#["en"]_i = 100.0/500.0 "mmol"/"mL" = "0.2000 M"#
This has two "equilibria", so let us form a composite "equilibrium" constant:
#beta = K_(f1)K_(f2) = 7.7 xx 10^4 cdot 8.7 xx 10^13 = 6.7 xx 10^18#
This is for the following two reactions combined:
#"Co"^(2+)(aq) + 6"NH"_3(aq) -> ["Co"("NH"_3)_6]^(2+)(aq)#
#"Co"^(2+)(aq) + 3"en"(aq) -> ["Co"("en")_3]^(2+)(aq)#
#"-----------------------------------------------------------"#
#2"Co"^(2+)(aq) + 6"NH"_3(aq) + 3"en"(aq) -> ["Co"("NH"_3)_6]^(2+)(aq) + ["Co"("en")_3]^(2+)(aq)#
And so, the composite formation constant is:
#beta = 6.7 xx 10^18 = ([["Co"("NH"_3)_6]^(2+)][["Co"("en")_3]^(2+)])/(["Co"^(2+)]^2["NH"_3]^6["en"]^3)#
The changes in concentration from an ICE table would then be:
#Delta["Co"^(2+)] = -2x#
#Delta["NH"_3] = -6x#
#Delta["en"] = -3x#
#Delta[["Co"("NH"_3)_6]^(2+)] = x#
#Delta[["Co"("en")_3]^(2+)] = x#
This gives:
#6.7 xx 10^18 = (x^2)/((0.00150 - 2x)^2(0.2500 - 6x)^6(0.2000 - 3x)^3)#
This is nearly impossible to solve without approximations, but using Wolfram Alpha we can confirm that
One way to solve this accurately while keeping it feasible in a calculator is to take the
#ln(6.7 xx 10^18) = 2lnx - 2ln(0.00150 - 2x) - 6ln(0.2500 - 6x) - 3ln(0.2000 - 3x)#
Since
#43.349 ~~ -14.391 - 2ln(0.00150 - 2x) - (-8.427) - (-4.862)#
#~~ -1.102 - 2ln(0.00150 - 2x)#
Therefore,
#0.00150 - 2x ~~ e^(-22.2255)#
And