The terminal side of θ in standard position contains (-6,8), how do you find the exact values of the six trigonometric functions of θ?

1 Answer
Feb 28, 2018

See explanation.

Explanation:

If the point in the angle's terminal side is P=(x,y) then the trigonometric functions can be calculated as:

sinα=yr

cosα=xr

tanα=yx

cotα=xy

secα=rx

cscα=ry

where r=x2+y2

For the given point we have:

r=(6)2+82=36+64=10

So the functions are:

sinα=810=45

cosα=610=35

tanα=86=43

cotα=68=34

secα=106=53=123

cscα=108=54=114