The triangle A with coordinates (3,2) (5,4) (7,4) can be mapped on to triangle D with a transformation matrix P. Find coordinates of D?

the transformation matrix for P is #(""^0 ""_(1) ""^(-1) ""_(0))#

1 Answer
Jan 19, 2018

#(-2,3)#, #(-4,5)# and #(-4,7)#

Explanation:

Triangle #A# is mapped to #D# via a Transformation matrix #bbP#, so given the column vector coordinates of #A#, #bb ul a#, #bb ul b# and #bb ul c#, say, we can write the destination coordinate as:

# bb ul (a)' = bb Pbb ul a #, # \ \ bb ul (b)' = bb P bb ul b #, and , # \ \ bb ul (c)' = bb Pbb ul c #,

Given the coordinates #(3,2)#, #(5,4)# and #(7,4)# and the matrix #bb P= ( (0,-1), (1,0)) # we can write in matrix form as

# bb D = ( (0,-1), (1,0)) ( (3,5,7), (2,4,4) ) #

# \ \ \ = ( (0*3-1*2, 0*5-1*4, 0*7-1*4), (1*3+0*2, 1*5+0*4, 1*7+0*4) )#

# \ \ \ = ( (-2, -4, -4), (3, 5, 7) )#

And so the respective coordinates of #D# are:

#(-2,3)#, #(-4,5)# and #(-4,7)#

And we can view the transformation graphically:
Steve M

We can conclude that the matrix transformation represents an anti-clockwise rotation of #90^o# about the origin.