We need to use the formula #E_("P") = - frac(G M m)(r)#; where #E_("P")# is the gravitational potential energy, #G# is the gravitational constant, #M# and #m# are the masses of the two objects, and #r# is the distance between their centres.
Let's calculate the gravitational potential energy for our case.
#r# will be the difference between the two distances:
#Rightarrow E_("P") = - frac(6.67408 times 10^(-11) " m"^(3) " kg"^(- 1) " s"^(- 2) times 6 " MG" times 9 " MG")(110 " m" - 320 " m")#
#Rightarrow E_("P") = - frac(6.67408 times 10^(-11) " m"^(3) " kg"^(- 1) " s"^(- 2) times 6000 " kg" times 9000 " kg")(- 210 " m")#
#Rightarrow E_("P") = frac(6.67408 times 10^(-11) " m"^(2) " kg"^(- 1) " s"^(- 2) times 5.4 times 10^(7) " kg"^(2))(210)#
#Rightarrow E_("P") = frac(0.0036040032 " kg m"^(2) " s"^(- 2))(210)#
#Rightarrow E_("P") = 0.00001716192 " kg m"^(2) " s"^(- 2)#
#Rightarrow E_("P") = 1.72 times 10^(- 5) " kg m"^(2) " s"^(- 2)#
#therefore E_("P") = 1.72 times 10^(- 5) " J"#
Therefore, the gravitational potential energy between the two objects is #1.72 times 10^(- 5) " J"#.