Using the definition of derivative, how do you prove that (cos x)' = -sin x?

2 Answers
Apr 20, 2015

Remembering the cosine difference-to-product formula, that says:

#cosalpha-cosbeta=-2sin((alpha+beta)/2)sin((alpha-beta)/2)#

and the fundamental limit:

#lim_(xrarr0)sinx/x=1#, or in the most general writing:

#lim_(f(x)rarr0)sinf(x)/f(x)=1#

than:

#f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h=lim_(hrarr0)(cos(x+h)-cosx)/h=#

#=lim_(hrarr0)(-2sin((x+h+x)/2)sin((x+h-x)/2))/h=#

#=lim_(hrarr0)(-2sin(x+h/2)sin(h/2))/h=#

#=lim_(hrarr0)(-sin(x+h/2)sin(h/2))/(h/2)=#

#=lim_(hrarr0)-sin(x+h/2)*lim_(hrarr0)sin(h/2)/(h/2)=-sinx*1=-sinx#.

Apr 20, 2015

use the formula for the cosine of a sum:
#cos(a+b)= cosacosb-sinasinb#

together with the fundamental tigonometric limits:

#lim_(hrarr0)sinx/x = 1# and

#lim_(hrarr0)(cosx-1)/x = 0#

For #f(x)=cosx#, we get:

#f'(x)= lim_(hrarr0)(cos(x+h)-cosx)/h#

#color(white)"sssss"# #= lim_(hrarr0)(cosxcosh-sinxsinh-cosx)/h#

#color(white)"sssss"# #= lim_(hrarr0)(cosxcosh-cosx-sinxsinh)/h#

#color(white)"sssss"# #= lim_(hrarr0)(cosx(cosh-1)/h-sinxsinh/h)#

#color(white)"sssss"# #= lim_(hrarr0)cosxlim_(hrarr0)(cosh-1)/h-lim_(hrarr0)sinxlim_(hrarr0)sinh/h)#

#color(white)"sssss"# #= (cosx)(0)-(sinx)(1) = -sinx#