Using the limit definition, how do you differentiate #f(x)= 3/(x+1)#?

1 Answer
Nov 28, 2015

#f'(x)=-3/(x+1)^2#

Explanation:

The limit definition of the derivative:

#f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h#

We know that #f(x)=3/(x+1)#, so #f(x+h)=3/(x+h+1)#.

We can plug this in to find that:

#f'(x)=lim_(hrarr0)(3/(x+h+1)-3/(x+h))/h#

Find a common denominator.

#f'(x)=lim_(hrarr0)((3(x+1))/((x+h+1)(x+1))-(3(x+h+1))/((x+h+1)(x+1)))/h#

Simplify.

#f'(x)=lim_(hrarr0)(cancel(3x)cancel(+3)cancel(-3x)-3hcancel(-3))/(h(x+h+1)(x+1))#

#f'(x)=lim_(hrarr0)(-3cancel(h))/(cancel(h)(x+h+1)(x+1))#

#f'(x)=lim_(hrarr0)(-3)/((x+h+1)(x+1))#

Now, calculate the limit and plug in #0# for #h#.

#f'(x)=-3/(x+1)^2#