Using the limit definition, how do you differentiate # f(x) = x^2+3#? Calculus Derivatives Limit Definition of Derivative 1 Answer Daniel L. Nov 16, 2015 See expanation Explanation: #f'(x_0)=lim_{h->0}(f(x_0+h)-f(x_0))/h# If we substitute #x_0^2+3# we get: #f'(x_0)=lim_{h->0}((x_0+h)^2+3-(x_0^2+3))/h# #f'(x_0)=lim_{h->0}((x_0^2+2x_0h+h^2)+3-x_0^2-3)/h# #f'(x_0)=lim_{h->0}(x_0^2+2x_0h+h^2+3-x_0^2-3)/h# #f'(x_0)=lim_{h->0}(2x_0h+h^2)/h# #f'(x_0)=lim_{h->0}(h(2x_0+h))/h# #f'(x_0)=lim_{h->0}(2x_0+h)# #f'(x_0)=2x_0# Answer link Related questions What is the limit definition of the derivative of the function #y=f(x)# ? Ho do I use the limit definition of derivative to find #f'(x)# for #f(x)=3x^2+x# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=sqrt(x+3)# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=1/(1-x)# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=x^3-2# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=1/sqrt(x)# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=5x-9x^2# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=sqrt(2+6x)# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=mx+b# ? How do I use the limit definition of derivative to find #f'(x)# for #f(x)=c# ? See all questions in Limit Definition of Derivative Impact of this question 1208 views around the world You can reuse this answer Creative Commons License