Using the limit definition, how do you find the derivative of #f(x) = sqrt(x + 2)#?
1 Answer
May 6, 2018
Explanation:
#f'(x)=lim_(hto0)(f(x+h)-f(x))/h#
#=lim_(hto0)(sqrt(x+h+2)-sqrt(x+2))/h#
#=lim_(hto0)((sqrt(x+h+2)-sqrt(x+2))(sqrt(x+h+2)+sqrt(x+2)))/(h(sqrt(x+h+2)+sqrt(x+2))#
#=lim_(hto0)(x+h+2-(x+2))/(h(sqrt(x+h+2)+sqrt(x+2))#
#=lim_(hto0)cancel(h)/(cancel(h)(sqrt(x+h+2)+sqrt(x+2)#
#=1/(sqrt(x+2)+sqrt(x+2))=1/(2sqrt(x+2))#