What are the first and second derivatives of #f(x)=2ln(sqrt((4x-4)/(6x+10))) #?

1 Answer
Dec 25, 2015

We'll need the chain rule and the quotient rule here.

Explanation:

  • Chain rule states that #(dy)/(dx)=(dy)/(du)(du)/(dv)(dv)/(dx)#

  • Quotient rule states that for #y=f(x)/g(x)#, then #y'=(f'g-fg')/g^2#

Renaming #u=sqrt(v)# and #v=(4x-4)/(6x+10)#, we have the new #f(x)=2ln(u)# and can now start, but let's do it step-by-step.

#(dy)/(du)=2/u#

#(du)/(dv)=1/(2sqrt(v))#

#(dv)/(dx)=((4)(6x+10)-(4x-4)(6))/(6x+10)^2=(24x+40-24x+24)/(6x+10)^2=64/(6x+10)^2#

Aggregating:

#(dy)/(dx)=128/(u*2sqrt(v)*(6x+10)^2)#

Substituting #u#:

#(dy)/(dx)=128/(sqrt(v)2sqrt(v)(6x+10)^2)=128/(2v*(6x+10)^2)#

Substituting #v# (Holy Jesus!):

#(dy)/(dx)=128/(2((4x-4)/(cancel(6x+10)))(6x+10)^(cancel(2)))#

#(dy)/(dx)=64/((4x-4)(6x+10))=64/(24x^2+16x-40)#

#(dy)/(dx)=8/(3x^2+2x-5)#

Now, the second derivative:

#(dy^2)/(d^2x)=((0)(3x^2+2x+5)-(8)(6x+2))/(3x^2+2x-5)^2=-(48x+16)/(3x^2+2x-5)^2#