What are the first and second derivatives of # g(x) = lntanx#?

1 Answer
Dec 14, 2015

#g'(x)=sec^2x/tanx#

#g''(x)=(sec^2x(2tan^2x-sec^2x))/tan^2x#

Explanation:

Know that #d/dx[ln(u)]=(u')/u#.

Therefore,

#g'(x)=(d/dx[tanx])/tanx=sec^2x/tanx#

#g''(x)=(tanxd/dx[sec^2x]-sec^2xd/dx[tanx])/tan^2x#

Find each derivative separately.

Chain rule:
#d/dx[sec^2x]=2secxd/dx[secx]=2secx(secxtanx)=2sec^2xtanx#

#d/dx[tanx]=sec^2x#

Plug these back in.

#g''(x)=(2sec^2xtan^2x-sec^4x)/tan^2x#

#g''(x)=(sec^2x(2tan^2x-sec^2x))/tan^2x#