What are the first and second derivatives of # g(x) =(lnx)^2-ln(x^2)#?

1 Answer
Nov 30, 2015

#d/dxg(x) = (2(ln(x)-1))/x#

#d^2/dx^2g(x) = (4-2ln(x))/x^2#

Explanation:

We will use

  • The chain rule:
    #d/dxf(g(x)) = f'(g(x)g'(x)#

  • The quotient rule:
    #d/dxf(x)/g(x) = (f'(x)g(x) - f(x)g'(x))/g^2(x)#

  • #d/dx (f(x) +- g(x)) = f'(x) +- g'(x)#

  • #d/dxln(x) = 1/x#

  • #d/dx x^n = nx^(n-1)#


#g'(x) = d/dx(ln^2(x) - ln(x^2)) = d/dx(ln^2(x)) - d/dx(ln(x^2))#

#=2ln(x)(d/dxln(x)) - 1/(x^2)(d/dxx^2)# (by the chain rule)

#= 2ln(x)(1/x) - 1/x^2(2x)#

#= (2ln(x))/x - 2/x#

#= (2(ln(x) - 1))/x#

To find the second derivative, we take the derivative of #g'(x)# using the quotient rule.

#g''(x) = d/dx(2(ln(x)-1))/x#

#= ((d/dx2(ln(x)-1))x - 2(ln(x)-1)(d/dxx))/x^2#

#=((2(1/x))x - 2(ln(x)-1)(1))/x^2#

#= (2 - 2ln(x) + 2)/x^2#

#= (4-2ln(x))/x^2#