What are the local extrema, if any, of #f(x) =(lnx-1)^2 / x#? Calculus Graphing with the First Derivative Identifying Turning Points (Local Extrema) for a Function 1 Answer Leland Adriano Alejandro Jan 9, 2016 #(e^3, 4e^-3)# Maximum Point #(e, 0)# Minimum Point Answer link Related questions How do you find the x coordinates of the turning points of the function? How do you find the turning points of a cubic function? How many turning points can a cubic function have? How do you find the coordinates of the local extrema of the function? How do you find the local extrema of a function? How many local extrema can a cubic function have? How do I find the maximum and minimum values of the function #f(x) = x - 2 sin (x)# on the... If #f(x)=(x^2+36)/(2x), 1 <=x<=12#, at what point is f(x) at a minimum? How do you find the maximum of #f(x) = 2sin(x^2)#? How do you find a local minimum of a graph using the first derivative? See all questions in Identifying Turning Points (Local Extrema) for a Function Impact of this question 1229 views around the world You can reuse this answer Creative Commons License