What are the points of inflection, if any, of #f(x) = 5xcos^2x − 10sinx^2 # on #x in [0,2pi]#?
1 Answer
Jan 2, 2016
Find
#f'(x)=5cos^2x-10xcosxsinx-20xcos(x^2)#
#f''(x)=-20cosxsinx+10xsin^2x-10xcos^2x-20cos(x^2)+40x^2sin(x^2)#
Graph of
graph{-20cos(x)sin(x)+10x(sinx)^2-10x(cosx)^2-20cos(x^2)+40x^2sin(x^2) [-0, 6.283, -1800, 1800]}
There are a slew of times when
They are:
#x=0.886# #x=1.854# #x=2.521# #x=3.066# #x=3.559# #x=3.996# #x=4.341# #x=4.698# #x=5.011# #x=5.321# #x=5.607# #x=5.878# #x=6.144#
Graph of
graph{5x(cosx)^2-10sin(x^2) [0, 6.283, -15, 40]}