What are the points of inflection, if any, of #f(x) = 5xcos^2x − 10sinx^2 # on #x in [0,2pi]#?

1 Answer
Jan 2, 2016

Find #f''(x)# and determine where it changes signs.

#f'(x)=5cos^2x-10xcosxsinx-20xcos(x^2)#

#f''(x)=-20cosxsinx+10xsin^2x-10xcos^2x-20cos(x^2)+40x^2sin(x^2)#

Graph of #f''(x)#:

graph{-20cos(x)sin(x)+10x(sinx)^2-10x(cosx)^2-20cos(x^2)+40x^2sin(x^2) [-0, 6.283, -1800, 1800]}

There are a slew of times when #f''(x)# switches from positive to negative on the interval, all of which are points of inflection.

They are:

  • #x=0.886#
  • #x=1.854#
  • #x=2.521#
  • #x=3.066#
  • #x=3.559#
  • #x=3.996#
  • #x=4.341#
  • #x=4.698#
  • #x=5.011#
  • #x=5.321#
  • #x=5.607#
  • #x=5.878#
  • #x=6.144#

Graph of #f(x)#:

graph{5x(cosx)^2-10sin(x^2) [0, 6.283, -15, 40]}