What are the points of inflection of #f(x)=8x^2sin(x-pi/2) # on # x in [0, 2pi]#?

1 Answer

Three Points of inflection:

#x_1=0.59974142102781#
#y_1=-2.3753382855308#

#x_2=2.6889674991807#
#y_2=52.0195659894#

#x_3=5.385729654028#
#y_3=-144.70578562542#

Explanation:

From the given function
#f(x)=8x^2*sin(x-pi/2)#
Differentiate to find #f' (x)#
#f' (x)=8[2x*sin(x-pi/2)+x^2*cos(x-pi/2)]#

We are solving for point of inflections, so we take the second derivative #f''(x)#

#f'' (x)=16[sin(x-pi/2)+x*cos(x-pi/2)]+8[2x*cos(x-pi/2)-x^2*sin(x-pi/2)]#

Set #f'' (x)=0#, then solve for #x#

Simplify first, then solve for #x#

#sin(x-pi/2)(16-8x^2)+cos(x-pi/2)(16x+16x)=0#
#tan(x-pi/2)=(4x)/(x^2-2)#

Using graphics calculator,

#x_1=0.59974142102781#
and from #f(x)=8x^2*sin(x-pi/2)#

#y_1=f(x_1)=8(0.59974142102781)^2*sin(0.59974142102781-pi/2)#
#y_1=-2.3753382855308#

There are other points of inflection #(x_2, y_2)# and #(x_3, y_3)#

#x_2=2.6889674991807#
#y_2=52.0195659894#

#x_3=5.385729654028#
#y_3=-144.70578562542#

Kindly see the graph of #f(x)=8x^2*sin(x-pi/2)# and from #[0, 2pi]#, there are 3 points of inflection.

graph{y=8x^2*sin(x-pi/2)[-60,60,-30,30]}

God bless...I hope the explanation is useful.