What are the six trig function values of #(7pi)/6#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Nov 14, 2015 Trig Table of Special Arcs and unit circle --> #sin (7pi)/6 = sin (pi/6 + pi) = - sin pi/6 = - 1/2# #cos (7pi)/6 = cos (pi/6 + pi) = - cos pi/6 = -sqrt3/2# #tan pi/6 = sin/(cos) = 1/sqrt3 = sqrt3/3# #cot = 1/(tan) = sqrt3# #sec = 1/(cos) = -2/sqrt3 = - 2sqrt3/3# #csc = 1/(sin) = -2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 27060 views around the world You can reuse this answer Creative Commons License