What are the six trig function values of #-90#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer maganbhai P. Mar 26, 2018 Please see below. Explanation: #sin(-90^0)==-sin90^0=-1# #cos(-90^0)==cos90^0=0# #tan(-90^0)==-tan90^0=# undefined #csc(-90^0)==-csc90^0=-1# #sec(-90^0)==sec90^0=# undefined #cot(-90^0)==-cot90^0=0# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 1223 views around the world You can reuse this answer Creative Commons License