What are the zeros of #f(x) = x^3-140x^2+7984x-107584#?
2 Answers
Use Cardano's method to find Real zero:
#x_1 = 1/3(140+8 root(3)(1628+12sqrt(20589))+8 root(3)(1628-12sqrt(20589)))#
and two related Complex zeros.
Explanation:
Given:
#f(x) = x^3-140x^2+7984x-107584#
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 1249387417600-2035736559616-1180841984000-312506560512+2164555653120 = -115142033408#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27f(x)=27x^3-3780x^2+215568x-2904768#
#=(3x-140)^3+13056(3x-140)+1667072#
#=t^3+13056t+1667072#
where
Cardano's method
We want to solve:
#t^3+13056t+1667072=0#
Let
Then:
#u^3+v^3+3(uv+4352)(u+v)+1667072=0#
Add the constraint
#u^3-82426462208/u^3+1667072=0#
Multiply through by
#(u^3)^2+1667072(u^3)-82426462208=0#
Use the quadratic formula to find:
#u^3=(-1667072+-sqrt((1667072)^2-4(1)(-82426462208)))/(2*1)#
#=(1667072+-sqrt(2779129053184+329705848832))/2#
#=(1667072+-sqrt(3108834902016))/2#
#=(1667072+-12288sqrt(20589))/2#
#=833536+-6144sqrt(20589)#
#=8^3(1628+-12sqrt(20589))#
Since this is Real and the derivation is symmetric in
#t_1=8 root(3)(1628+12sqrt(20589))+8 root(3)(1628-12sqrt(20589))#
and related Complex roots:
#t_2=8 omega root(3)(1628+12sqrt(20589))+8 omega^2 root(3)(1628-12sqrt(20589))#
#t_3=8 omega^2 root(3)(1628+12sqrt(20589))+8 omega root(3)(1628-12sqrt(20589))#
where
Now
#x_1 = 1/3(140+8 root(3)(1628+12sqrt(20589))+8 root(3)(1628-12sqrt(20589)))#
#x_2 = 1/3(140+8 omega root(3)(1628+12sqrt(20589))+8 omega^2 root(3)(1628-12sqrt(20589)))#
#x_3 = 1/3(140+8 omega^2 root(3)(1628+12sqrt(20589))+8 omega root(3)(1628-12sqrt(20589)))#
Explanation:
I used the Cubic Equation calculator