What does the equation #z_2/z_1=r_2/r_1(cos(θ_2-θ_1)+isin(θ_2-θ_1))# represent?

Is it correct to say this represents the division of polar/trig forms?

1 Answer
Apr 11, 2018

Yes, it is correct to say this represents the division of polar/trig forms.

Explanation:

#z_2/z_1=r_2/r_1(cos(theta_2-theta_1)+isin(theta_2-theta_1))#

represents division of polar/trig forms of two polar numbers

#z_2=r_2(costheta_2+isintheta_2)# and #z_1=r_1(costheta_1+isintheta_1)#

Observe that #z_2/z_1=(r_2(costheta_2+isintheta_2))/(r_1(costheta_1+isintheta_1))#

Now rationalizing the denominator by multiplying by cojugate of denominator, we get

#r_2/r_1((costheta_2+isintheta_2)(costheta_1-isintheta_1))/((costheta_1+isintheta_1)(costheta_1-isintheta_1))#

= #r_2/r_1(costheta_2costheta_1+isintheta_2costheta_1-icostheta_2sintheta_1-i^2sintheta_2sintheta_1)/(cos^2theta_1+sin^2theta_1)#

= #r_2/r_1((costheta_2costheta_1+sintheta_2sintheta_1)+i(sintheta_2costheta_1-icostheta_2sintheta_1))/(cos^2theta_1+sin^2theta_1)#

= #r_2/r_1(cos(theta_2-theta_1)+isin(theta_2-theta_1))#