What is #(4a^2 + 34a - 65) -: (a + 1.0)#?

1 Answer
Feb 13, 2017

#4a+30-95/(x+1)#

Explanation:

One way of doing this is to express the numerator as factors of the divisor (a + 1).

Some #color(blue)"algebraic manipulation"# is required.

#(color(red)(4a)(a+1)+(color(magenta)(-4a)+34a)-65)/(a+1)#

#=(color(red)(4a)(a+1)+color(red)(30)(a+1)+(color(magenta)(-30)-65))/(a+1)#

#=(color(red)(4a)cancel((a+1)))/cancel((a+1))+(color(red)(30)cancel((a+1)))/cancel((a+1))-95/(a+1)#

#rArr(4a^2+34a-65)/(a+1)=4a+30-95/(a+1)#