# What is 9/2 as a mixed number?

Nov 11, 2016

$\frac{9}{2} = 4 \frac{1}{2}$

#### Explanation:

$\frac{9}{2} = \frac{2 + 2 + 2 + 2 + 1}{2}$

$= \frac{4 \cdot 2 + 1}{2}$

$= \frac{4 \cdot 2}{2} + \frac{1}{2}$

$= 4 \cdot \frac{2}{2} + \frac{1}{2}$

$= 4 \cdot 1 + \frac{1}{2}$

$= 4 + \frac{1}{2}$

$= 4 \frac{1}{2}$

Nov 11, 2016

$\frac{9}{2} = 4 \frac{1}{2}$

#### Explanation:

An improper fraction means that all the whole numbers are given as fractions.

'Counting in halves' would be:

$\frac{1}{2} \text{ "2/2" "3/2" "4/2" "5/2" "6/2" "7/2" "8/2" } \frac{9}{2}$

Or in mixed numbers:

$\frac{1}{2} \text{ "1" "1 1/2" "2" "2 1/2" "3" " 3 1/2" "4" } 4 \frac{1}{2}$

To convert an improper fraction into a mixed number, divide the numerator by the denominator to find out how many whole numbers there are. The remainder is given as a fraction with the same denominator.

$\frac{9}{2} = 9 \div 2$

$9 \div 2 = 4 \text{ remainder } 1$

$\frac{9}{2} = 4 \frac{1}{2}$

Another example: $\frac{23}{5} = 23 \div 5$

$23 \div 5 = 4 \text{ remainder } 3$

$\frac{23}{5} = 4 \frac{3}{5}$