What is cos(pi/12)?

1 Answer
Feb 19, 2015

The answer is: (sqrt6+sqrt2)/4

Remembering the formula:

cos(alpha/2)=+-sqrt((1+cosalpha)/2)

than, since pi/12 is an angle of the first quadrant and its cosine is positive so the +- becomes +,

cos(pi/12)=sqrt((1+cos(2*(pi)/12))/2)=sqrt((1+cos(pi/6))/2)=

=sqrt((1+sqrt3/2)/2)=sqrt((2+sqrt3)/4)=sqrt(2+sqrt3)/2

And now, remembering the formula of the double radical:

sqrt(a+-sqrtb)=sqrt((a+sqrt(a^2-b))/2)+-sqrt((a-sqrt(a^2-b))/2)

useful when a^2-b is a square,

sqrt(2+sqrt3)/2=1/2(sqrt((2+sqrt(4-3))/2)+sqrt((2-sqrt(4-3))/2))=

1/2(sqrt(3/2)+sqrt(1/2))=1/2(sqrt3/sqrt2+1/sqrt2)=1/2(sqrt6/2+sqrt2/2)=

(sqrt6+sqrt2)/4