What is #F(x) = int cos^2x-tan^3x+sinx dx# if #F(pi/3) = 1 #? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer A. S. Adikesavan Nov 3, 2016 #F(x)=1/2x+1/4 sin 2x-1/2 tan^2x-ln cos x-cos x+9/2-1/8sqrt 3- ln 2-pi/6# Explanation: Use du=#(du)/(dx)#dx. Now, #F(x)=int((1+cos 2x)/2-tan x (sec^2x-1)+sin x) dx# #=intd(1/2x)+int d((1/2((sin 2x)/2))-int d((tan^2x)/2)# #+int d(-ln (cos x))+int d(-cos x)# #=1/2x+1/4 sin 2x-1/2 tan^2x-ln cos x-cos x + C# #F(pi/3)=1/6pi+1/4 sin (2/3pi)-tan^2(1/3pi)-ln (cos (1/3pi)-cos (1/3pi) +C# #=1/6pi+1/8sqrt 3 - 3-ln(1/2)-1/2+C# #=1# So, #C=9/2-1/8sqrt 3- ln 2-pi/6# Answer link Related questions How do you find the constant of integration for #intf'(x)dx# if #f(2)=1#? What is a line integral? What is #f(x) = int x^3-x# if #f(2)=4 #? What is #f(x) = int x^2+x-3# if #f(2)=3 #? What is #f(x) = int xe^x# if #f(2)=3 #? What is #f(x) = int x - 3 # if #f(2)=3 #? What is #f(x) = int x^2 - 3x # if #f(2)=1 #? What is #f(x) = int 1/x # if #f(2)=1 #? What is #f(x) = int 1/(x+3) # if #f(2)=1 #? What is #f(x) = int 1/(x^2+3) # if #f(2)=1 #? See all questions in Evaluating the Constant of Integration Impact of this question 1358 views around the world You can reuse this answer Creative Commons License