What is #f(x) = int e^x-x dx# if #f(-1) = 1 #? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer Bill K. Feb 24, 2016 #f(x)=e^(x)-x^2/2+3/2-e^{-1}# Explanation: The general antiderivative is #\int (e^{x}-x)\ dx=e^{x}-x^{2}/2+C# Therefore, #f(x)=e^{x}-x^{2}/2+C# for some constant #C#. Since #f(-1)=1#, we get #1=e^{-1}-(-1)^{2}/2+C=e^{-1}-1/2+C#, which implies that #C=3/2-e^{-1}#. Hence, #f(x)=e^(x)-x^2/2+3/2-e^{-1}#. Answer link Related questions How do you find the constant of integration for #intf'(x)dx# if #f(2)=1#? What is a line integral? What is #f(x) = int x^3-x# if #f(2)=4 #? What is #f(x) = int x^2+x-3# if #f(2)=3 #? What is #f(x) = int xe^x# if #f(2)=3 #? What is #f(x) = int x - 3 # if #f(2)=3 #? What is #f(x) = int x^2 - 3x # if #f(2)=1 #? What is #f(x) = int 1/x # if #f(2)=1 #? What is #f(x) = int 1/(x+3) # if #f(2)=1 #? What is #f(x) = int 1/(x^2+3) # if #f(2)=1 #? See all questions in Evaluating the Constant of Integration Impact of this question 1370 views around the world You can reuse this answer Creative Commons License