What is #f(x) = int (x-4)^3 dx# if #f(3)=-1 #?
1 Answer
Mar 17, 2016
Explanation:
To integrate, use substitution, then use the rule
#intu^ndu=u^(n+1)/(n+1)+C#
If we set
#f(x)=intu^3du#
Applying the rule, this becomes
#f(x)=u^4/4+C#
#f(x)=(x-4)^4/4+C#
Now, we can determine
#-1=(3-4)^4/4+C#
#=-1=(-1)^4/4+C#
#=-1=1/4+C#
#-5/4=C#
So,
#f(x)=(x-4)^4/4-5/4=((x-4)^4-5)/4#