What is #f(x) = int x/sqrt(x^2+1) dx# if #f(2) = 3 #?
1 Answer
Mar 20, 2016
Explanation:
To integrate:
Let
This gives us:
#f(x)=1/2int(2x)/sqrt(x^2+1)dx=1/2int1/sqrtudu=1/2intu^(-1/2)du#
Now, we integrate using the rule:
So, we have
#f(x)=1/2u^(1/2)/(1/2)+C=1/2sqrtu*2+C=sqrtu+C#
#f(x)=sqrt(x^2+1)+C#
Using the original condition
#3=sqrt(2^2+1)+C#
#3=sqrt5+C#
#C=3-sqrt5#
So, substituting this in, we see that
#f(x)=sqrt(x^2+1)+3-sqrt5#