What is #int_(2)^(8) (x-1)/(x^3+x^2)dx #?
1 Answer
Explanation:
The denominator can be factored as
#x^2(x + 1)#
Now using partial fractions, we have:
#(Ax + B)/x^2 + C/(x+ 1) = (x - 1)/(x(x + 1))#
#Ax^2 + Bx + Ax + B + Cx^2 = x - 1#
We now write a system of equation
If we solve, we get:
#A = 2, B = -1, C = -2#
Hence the partial fraction decomposition is
#(2x - 1)/x^2 - 2/(x + 1)#
The integral becomes:
#I = int (2x - 1)/x^2 - 2/(x + 1)dx#
#I = int (2x - 1)/x^2 dx - int 2/(x+ 1) dx#
#I = int (2x)/x^2 - 1/x^2 dx - int 2/(x +1)dx#
#I = int 2/x dx - int 1/x^2dx - int 2/(x + 1)dx#
#I = 2ln|x| + x^-1 - 2ln|x + 1| + C#
Which can be written as
#I = 2ln|(x)/(x + 1)| + x^-1 + C#
We now evaluate the definite integral.
#I = 2ln|8/9| + 1/8 - (2ln|2/3| + 1/2)#
#I = 2ln|8/9| - 2ln|2/3| + 1/8 - 1/2#
#I = 2(ln|(8/9)/(2/3)|) - 3/8#
#I = 2ln|4/3| - 3/8#
Hopefully this helps!