What is #int (2x)/(x^2+6x+13) dx#?
1 Answer
Explanation:
A slightly different approach:
Since the derivative of the denominator is
#=int(2x+6-6)/(x^2+6x+13)dx#
Split the fraction:
#=int(2x+6)/(x^2+6x+13)dx-int6/(x^2+6x+13)dx#
For the first integral, let
This gives us
#int1/udu-6int1/(x^2+6x+13)dx#
#=lnabsu-6int1/(x^2+6x+13)dx#
#=ln(x^2+6x+13)-6int1/(x^2+6x+13)dx#
Note that the absolute value signs are no longer necessary since
For the next integral, complete the square in the denominator.
#ln(x^2+6x+13)-6int1/((x+3)^2+4)dx#
We will want to make this resemble the arctangent integral:
#int1/(u^2+1)du=arctan(u)+C#
Focusing on just
#=int(1/4)/((x+3)^2/4+4/4)dx=1/4int1/((x+3)^2/4+1)dx#
To make this resemble
#=1/4int1/(u^2+1)dx#
To achieve a
#=1/2int(1/2)/(u^2+1)dx=1/2int1/(u^2+1)du=1/2arctan(u)+C#
Pulling this together,
#int1/((x+3)^2+4)dx=1/2arctan((x+3)/2)+C#
Combining this with the expression we came up with earlier, we see that the original integral equals
#=ln(x^2+6x+13)-6int1/(x^2+6x+13)dx#
#=ln(x^2+6x+13)-6(1/2)arctan((x+3)/2)+C#
#=ln(x^2+6x+13)-3arctan((x+3)/2)+C#