What is #int cos(7x+pi)-sin(5x-pi) #?

1 Answer
Jun 18, 2016

#-(sin7x)/7-(cos5x)/5+C#

Explanation:

Before calculating the integral let us simplify the trigonometric expression using some trigonometric properties we have:

Applying the property of #cos# that says:
#cos(pi+alpha)=-cosalpha#

#cos(7x+pi)=cos(pi+7x)#
So,
#color(blue)(cos(7x+pi)=-cos7x)#

Applying two properties of #sin# that says:
#sin(-alpha)=-sinalpha#and
#sin(pi-alpha)=sinalpha#

We have:
#sin(5x-pi)=sin(-(pi-5x))=-sin(pi-5x)# since
#sin(-alpha)=-sinalpha#
#-sin(pi-5x)=-sin5x#
Since#sin(pi-alpha)=sinalpha#
Therefore,
#color(blue)(sin(5x-pi)=-sin5x)#

First Substitute the simplified answers then compute the integral:

#color(red)(intcos(7x+pi)-sin(5x-pi)#
#=int-cos(7x)-(-sin5x)#
#=int-cos7x+sin5x#
#=-intcos7x+intsin5x#
#color(red)(=-(sin7x)/7-(cos5x)/5+C# ( where #C #is a constant number).