What is #int cosx-sin(x/2-pi) #? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Douglas K. Nov 27, 2016 #int (cos(x) - sin(x/2- pi))dx = sin(x) - 1/2cos(x/2) + C# Explanation: Given: #int (cos(x) - sin(x/2- pi))dx# Use the identity, #sin(A - B) = sin(A)cos(B) - cos(A)sin(B)#: #sin(x/2 - pi) = sin(x/2)cos(pi) - cos(x/2)sin(pi) # #sin(x/2 - pi) = -sin(x/2) # Substitute into the integrand: #int (cos(x) - (-sin(x/2)))dx# #int (cos(x) + sin(x/2))dx = sin(x) - 1/2cos(x/2) + C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1090 views around the world You can reuse this answer Creative Commons License