What is #int e^xsec^2(e^x)dx#?

1 Answer
Dec 10, 2017

#inte^xsec^2(e^x)dx=tan(e^x)+"c"#

Explanation:

We need to evaluate #inte^xsec^2(e^x)dx#

Let #u=e^x# and #{du}/dx=e^x#. Then #dx=e^(-x)du# and

#inte^xsec^2(e^x)=inte^xsec^2 u e^(-x)du=intsec^2 udu=tanu+"c"=tan(e^x)+"c"#

Note: if you're not convinced of the last step, you can let #v=tanu# and work from there to prove it, but the FTC tells use that the step is indeed correct without needing to make any further substitutions