What is #int_(pi/8)^((11pi)/12) sin^3x-cosx*cotxdx#?

1 Answer
May 13, 2018

The answer is #=-0.426#

Explanation:

First, calculate the indefinite integral

#I=int(sin^3x-cosxcotx)dx#

#=intsin^3xdx-intcoscotxdx#

#=I_1-I_2#

#I_1=intsin^3xdx=intsin^2xsinxdx#

#=int(1-cos^2x)sinxdx#

Let #u=cosx#, #=>#, #du=-sinxdx#

#I_1=int-(1-u^2)du#

#=u^3/3-u#

#=1/3cos^3x-cosx#

#I_2=intcoscotxdx#

#=int(cos^2xdx)/(sinx)#

#=int((1-sin^2x)dx)/(sinx)#

#=intcscxdx-intsinxdx#

#=-ln(cscx+cotx)+cosx#

Finally,

#I=1/3cos^3x-2cosx+ln(|cscx+cotx|)+C#

The definite integral is

#int_(1/8pi) ^(11/12pi)(sin^3x-cosxcotx)dx#

#=[1/3cos^3x-2cosx+ln(|cscx+cotx|)]_(1/8pi)^(11/12pi)#

#=(1/3cos^3(11/12pi)-2cos(11/12pi)+ln(|csc(11/12pi)+cot(11/12pi)|))-(1/3cos^3(1/8pi)-2cos(1/8pi)+ln(|csc(1/8pi)+cot(1/8pi)|))#

#=-0.426#