What is #int sin^3(12x)cos^2(12x) dx#?

1 Answer
Nov 7, 2015

#(3cos^5(12x)-5cos^3(12x))/180+ C#

Explanation:

Whenever you have sine and cosine functions in the integral, and the term inside terms are the same, its a good idea to check if you can use the identity;

#sin^2x + cos^2x=1#

In this case, we can rearrange so that the expression reads;

#sin^2(12x)=1-cos^2(12x)#

Now we can rewrite the integral a little bit.

#int sin^3(12x)cos^2(12x)dx#

#=int sin(12x)sin^2(12x)cos^2(12x)dx#

#=int sin(12x)(1-cos^2(12x))cos^2(12x)dx#

At first glance, this looks messier, but now we can use substitution to make the integration easier.

Let #u=cos(12x)#

Using the chain rule gives us;

#(du)/(dx) = -12sin(12x)#

#-1/12 du = sin(12x)dx#

Now that we have expressions for #u# and #du#, lets take another look at the intgral.

#int color(green)sin(12x)color(red)((1-cos^2(12x))cos^2(12x))color(green)dx#

We can make the #du# substitution for the green part, and the #u# substitutions in the red part.

#int -1/12(1-u^2)u^2du#

We can move the constant out of the integral, and multiply #u^2# through the parenthesis, to get the integral;

#-1/12 int u^2-u^4 du#

Using the power rule, this integral is not so bad.

#-1/12 (u^3/3-u^5/5) + C#

Multiply the #-1/12# through.

#u^5/60-u^3/36 +C#

Now we can find a common denominator.

#(3u^5-5u^3)/180 +C#

Re-substituting for #u# we get;

#(3cos^5(12x)-5cos^3(12x))/180+ C#