What is #int tan^3(2x) sec^100(2x) dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Leland Adriano Alejandro Jan 12, 2016 #1/204*sec^102 (2x) -1/200*sec^100 (2x) + C# Explanation: Reduce the integral #int tan ^3(2x) sec^100 (2x) ##dx# into #int sec^99 2x* tan^2 2x*(sec 2x* tan 2x) # #dx# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1149 views around the world You can reuse this answer Creative Commons License