What is #int x^3 * sqrt(x^2 + 4)dx#?

2 Answers
Dec 23, 2015

Use the substitution #u = x^2+4# to find

#intx^3sqrt(x^2+4)dx= 1/5(x^2+4)^(5/2) - 4/3(x^2+4)^(3/2)+C#

Explanation:

For this problem we will use:


We will proceed using the substitution #u = x^2 + 4#.
Then #du = 2xdx# and we have

#intx^3sqrt(x^2+4)dx = 1/2int((x^2+4)-4)sqrt(x^2+4)*2xdx#

#= 1/2int(u-4)sqrt(u)du#

#=1/2int(u^(3/2)-4u^(1/2))du#

#=1/2intu^(3/2)du - 2intu^(1/2)du#

#=1/5u^(5/2) - 4/3u^(3/2)+C#

#= 1/5(x^2+4)^(5/2) - 4/3(x^2+4)^(3/2)+C#

Dec 23, 2015

Use #u# substitution and then solve.

Explanation:

#int x^3 * sqrt(x^2 + 4) dx#

Let #u = x^2 + 4#

Differentiate with respect to #x#

#du = 2x dx#
#(du)/2 = x dx#

Also we have #u=x^2+4# therefore #x^2 = u-4#

#int x^3 * sqrt(x^2 + 4) dx#

Rewriting our integral as
#int x^2 * sqrt(x^2 + 4) x dx#

Substituting for #x^2, x^2+4 # and #x dx#

#int (u-4) sqrt(u) (du)/2 #
#1/2 int (u-4) sqrt(u) du#
#1/2 int (u^(3/2) - 4u^(1/2)) du# Note #sqrt(u) = u^(1/2)#
#1/2 { int u^(3/2) du - 4 int u^(1/2) du }#

We apply power rule #int x^n dx = x^(n+1)/(n+1) + C # where #x# not equal to #1#

#1/2 { u^(3/2 + 1)/(3/2+1) - 4 u^(1/2 + 1)/(1/2+1)} + C #
#1/2{ u^(5/2)/(5/2) - 4 u^(3/2)/(3/2)} + C#
#1/2 {(2/5)u^(5/2) - 4 (2/3) u^(3/2)}+C #
#1/5 u^(5/2) - 4/3 u^(3/2) + C#
#1/5 (x^2+4)^(5/2) - 4/3 (x^2+4)^(3/2) +C# Answer .

It can be further simplified if needed.