What is #int x^3ln(x+1+x^2) dx#?

1 Answer
Nov 23, 2016

#1/4x^4ln(x^2+x+1)+1/8ln(x^2+x+1)+sqrt3/4arctan((2x+1)/sqrt3)-1/8x^4+1/12x^3+1/8x^2-1/2x+C#

Explanation:

#I=intx^3ln(x^2+x+1)dx#

Use integration by parts (IBP). It takes the form #intudv=uv-intvdu#. For this integral, #intx^3ln(x^2+x+1)dx#, let

#{(u=ln(x^2+x+1),=>,du=(2x+1)/(x^2+x+1)dx),(dv=x^3dx,=>,v=1/4x^4):}#

Thus:

#I=1/4x^4ln(x^2+x+1)-1/4int(2x^5+x^4)/(x^2+x+1)#

Letting #J=int(2x^5+x^4)/(x^2+x+1)#, perform this polynomial long division.

#J=int((-x-2)/(x^2+x+1)+2x^3-x^2-x+2)dx#

Integrating the non-fractional terms first, we see that

#J=int(-x-2)/(x^2+x+1)dx+1/2x^4-1/3x^3-1/2x^2+2x#

Now let #K=int(-x-2)/(x^2+x+1)dx#.

#K=-1/2int(2x+1+3)/(x^2+x+1)=-1/2int(2x+1)/(x^2+x+1)-1/2int3/(x^2+x+1)#

The first can be solved using #t=x^2+x+1# so #dt=(2x+1)#.

#K=-1/2intdt/t-3/2int1/(x^2+x+1)dx=-1/2lnabs(t)-3/2int1/(x^2+x+1)dx#

#K=-1/2ln(x^2+x+1)-3/2int1/(x^2+x+1)dx#

Letting #H=int1/(x^2+x+1)dx#, complete the square in the denominator.

#H=int1/((x+1/2)^2+3/4)dx#

Let #x+1/2=sqrt3/2tantheta#. This implies that #(x+1/2)^2=3/4tan^2theta# and #dx=sqrt3/2sec^2thetad theta#.

#H=int1/(3/4tan^2theta+3/4)(sqrt3/2sec^2thetad theta)#

#H=4/3 sqrt3/2int1/(tan^2theta+1)sec^2thetad theta#

Since #tan^2theta+1=sec^2theta#, this becomes

#H=2/sqrt3intd theta=2/sqrt3theta#

From #x+1/2=sqrt3/2tantheta# we see that #theta=arctan((2x+1)/sqrt3)#.

#H=2/sqrt3arctan((2x+1)/sqrt3)#

Now back-substituting into #K=-1/2ln(x^2+x+1)-3/2H#, we get

#K=-1/2ln(x^2+x+1)-sqrt3arctan((2x+1)/sqrt3)#

This fits into #J=K+1/2x^4-1/3x^3-1/2x^2+2x#, that is,

#J=-1/2ln(x^2+x+1)-sqrt3arctan((2x+1)/sqrt3)+1/2x^4-1/3x^3-1/2x^2+2x#

Finally, since #I=1/4x^4ln(x^2+x+1)-1/4J#, this yields

#I=1/4x^4ln(x^2+x+1)+1/8ln(x^2+x+1)+sqrt3/4arctan((2x+1)/sqrt3)-1/8x^4+1/12x^3+1/8x^2-1/2x+C#