What is #int xarctan(x^2) dx#?

1 Answer
Jun 9, 2016

#intxarctan(x^2)dx=1/2x^2arctan(x^2)-1/4ln(1+x^4)+C#

Explanation:

First, we can perform substitution with the #x^2# and #x#,

Let #t=x^2# so that #dt=2xdx#.

#intxarctan(x^2)=1/2int2xarctan(x^2)dx=1/2intarctan(t)dt#

Now, we will use integration by parts. Don't be fooled by the fact that there's only the arctangent function in the integrand--the #dv# value can be #1#.

As a reminder, integration by parts takes the form:

#intudv=uv-intvdu#

Here, #u=arctan(t)# and #dv=dt#. These imply that #du=1/(1+t^2)dt# and #v=t#.

Thus

#1/2intarctan(t)dt=1/2[tarctan(t)-intt/(1+t^2)dt]#

For this second integral, use substitution again.

Let #s=1+t^2# and #ds=2tdt#.

#intt/(1+t^2)dt=1/2int(2t)/(1+t^2)dt=1/2int1/sds=1/2ln(abss)+C#

Thus,

#1/2intarctan(t)dt=1/2[tarctan(t)-1/2ln(abss)]+C#

Since #s=1+t^2#,

#1/2intarctan(t)dt=1/2tarctan(t)-1/4ln(abs(1+t^2))+C#

Now since #t=x^2#:

#1/2intarctan(t)dt=1/2x^2arctan(x^2)-1/4ln(1+x^4)+C#

And #1/2intarctan(t)dt=intxarctan(x^2)dx#, so

#intxarctan(x^2)dx=1/2x^2arctan(x^2)-1/4ln(1+x^4)+C#