What is integral of #tan^2(x) sec^4(x) dx?# Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Manikandan S. Feb 16, 2015 Another way of seeing this problem #I = inttan^2(x)sec^4(x)dx# # = inttan^2(x)(1+tan^2(x))^2dx# #u = tan(x)# then #dx = (du)/(1+u^2)# #=int(u^2(1+u^2)^2/(1+u^2))du# #=int(u^2+u^4)du# #=u^3/3+u^5/5+C# #I=tan^3(x)/3+tan^5(x)/5+C# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 6768 views around the world You can reuse this answer Creative Commons License