What is #Lim_(x-> 0) (1+3x)^(1/(2x))# by using L'hopital/L'hospital rule?

#Lim_(x-> 0) (1+3x)^(1/(2x))#

1 Answer
Dec 28, 2017

#lim_(x->0)(1+3x)^(1/(2x)) = e^(3/2)#

Explanation:

Write the function as:

#(1+3x)^(1/(2x)) = (e^(ln(1+3x)))^(1/(2x)) = e^(ln(1+3x)/(2x))#

and consider the limit:

#lim_(x->0) ln(1+3x)/(2x)#

this is in the indeterminate form #0/0# so we can apply l'Hospital's rule:

#lim_(x->0) ln(1+3x)/(2x) = lim_(x->0) (d/dx ln(1+3x))/(d/dx (2x)) = lim_(x->0) (3/(1+3x))/2= 3/2#

As the exponential function is continuous for any #x in RR#:

#lim_(x->0)e^(ln(1+3x)/(2x)) = e^(lim_(x->0) ln(1+3x)/(2x)) = e^(3/2)#