Dear friends, Please read our latest blog post for an important announcement about the website. ❤, The Socratic Team

# What is the answer to this math question?

## Use Taylor's power series for ${\tan}^{-} 1 x$ to evaluate: ${\lim}_{x \to 0} \frac{{\tan}^{-} 1 x - x}{x} ^ 3$

Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

1
Jun 17, 2018

${\lim}_{x \to 0} \frac{\arctan x - x}{x} ^ 3 = - \frac{1}{3}$

#### Explanation:

We want to find ${\lim}_{x \to 0} \frac{{\tan}^{-} 1 x - x}{x} ^ 3 = 0$ using Taylor series

First, let ${\tan}^{-} 1 \equiv \arctan$

Now,

$\arctan x = x - {x}^{3} / 3 + {x}^{5} / 5 - {x}^{7} / 7$

so

${\lim}_{x \to 0} \frac{\arctan x - x}{x} ^ 3$

$= {\lim}_{x \to 0} \frac{x - {x}^{3} / 3 + {x}^{5} / 5 - \ldots - x}{x} ^ 3$

$= {\lim}_{x \to 0} \left(- \frac{1}{3} + {x}^{2} / 5 - {x}^{4} / 7. . .\right)$

$= - \frac{1}{3}$

• 26 minutes ago
• 35 minutes ago
• 54 minutes ago
• An hour ago
• 33 seconds ago
• 3 minutes ago
• 3 minutes ago
• 7 minutes ago
• 8 minutes ago
• 24 minutes ago
• 26 minutes ago
• 35 minutes ago
• 54 minutes ago
• An hour ago