What is the antiderivative of #lnx#? Calculus Techniques of Integration Integration by Parts 1 Answer Monzur R. Mar 16, 2018 #intlnxdx=x(lnx-1)+"c"# Explanation: To find an antiderivative of #lnx#, we must find #intlnxdx#. To do so, we use integration by parts. #intudv=uv-intvdu# Let #u=lnx rArr du=1/xdx# And #dv=dx rArr v=x# So #intlnxdx=xlnx-intdx=xlnx-x=x(lnx-1)# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 105124 views around the world You can reuse this answer Creative Commons License