What is the antiderivative of #sin^2 x#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer maganbhai P. Apr 9, 2018 #I=1/4(2x-sin2x)+c# Explanation: Here, #I=intsin^2xdx# #=int(1-cos2x)/2dx# #=1/2int(1-cos2x)dx# #=1/2[x-(sin2x)/2]+c# #=1/4(2x-sin2x)+c# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1086 views around the world You can reuse this answer Creative Commons License