What is the antiderivative of #(sinx)/(cos^2x)#?

1 Answer
Jun 21, 2016

# \sec x + C#

Explanation:

The simplest way to do this is to recognise the patterns, namely that #(\cos^n x)' = n \cos^{n-1} x (- \sin x) = - n \cos^{n-1} x \ \sin x#.

here #n-1 = -2 \implies n = -1#

so we can explore #(\cos^{-1} x)' = (-1) \cos^{-2} x (- \sin x) = \frac{\sin x}{\cos^{2} x} # ... hey presto!

so #\int \frac{\sin x}{\cos^{2} x} dx = \frac{1}{\cos x} + C = \sec x + C#

A more methodical way, if you are just starting out, would be, starting with the integral #\int \frac{\sin x}{\cos^{2} x} dx #, to make the sub #u = \cos x, du = -\sin x dx#

So the integral becomes:

#\int \frac{\sin x}{\cos^2 x} (-\frac{1}{\sin x}) du = -\int \frac{1}{u^2} du #

#= \frac{1}{u} + C = \frac{1}{\cos x} + C = \sec x + C#