What is the arclength of r=-2sin(theta/4+(7pi)/8) r=2sin(θ4+7π8) on theta in [(pi)/4,(7pi)/4]θ[π4,7π4]?

1 Answer
Jun 7, 2018

L=(3pi)/4+sum_(n=1)^oo((1/2),(n))(-15/64)^n{((2n),(n))(3pi)/4+4sum_(k=0)^(n-1)sum_(m=0)^n((n),(k))(-1)^m/(n-k)delta_((n-k)(4m+2))}

Explanation:

r=-2sin(theta/4+(7pi)/8)
r^2=4sin^2(theta/4+(7pi)/8)

r'=-1/2costheta(theta/4+(7pi)/8)
(r')^2=1/4cos^2(theta/4+(7pi)/8)

Arclength is given by:

L=int_(pi/4)^((7pi)/4)sqrt(4sin^2(theta/4+(7pi)/8)+1/4cos^2(theta/4+(7pi)/8))d theta

Apply the substitution theta/4+(7pi)/8=phi:

L=2int_((15pi)/16)^((21pi)/16)sqrt(sin^2phi+1/16cos^2phi)dphi

Apply the identity sin^2phi=1-cos^2phi:

L=2int_((15pi)/16)^((21pi)/16)sqrt(1-15/16cos^2phi)dphi

Since 15/16cos^2phi<1, apply a series expansion for the square root:

L=2int_((15pi)/16)^((21pi)/16)sum_(n=0)^oo((1/2),(n))(-15/16cos^2phi)^ndphi

Isolate the n=0 term and simplify:

L=2int_((15pi)/16)^((21pi)/16)dphi+2sum_(n=1)^oo((1/2),(n))(-15/16)^nint_((15pi)/16)^((21pi)/16)cos^(2n)phidphi

Apply the Trigonometric power-reduction formula:

L=(3pi)/4+2sum_(n=1)^oo((1/2),(n))(-15/16)^nint_((15pi)/16)^((21pi)/16){1/4^n((2n),(n))+2/4^nsum_(k=0)^(n-1)((n),(k))cos((2n-2k)phi)}dphi

Integrate directly:

L=(3pi)/4+2sum_(n=1)^oo((1/2),(n))(-15/64)^n[((2n),(n))phi+sum_(k=0)^(n-1)((n),(k))sin((2n-2k)phi)/(n-k)]int_((15pi)/16)^((21pi)/16)

Insert limits:

L=(3pi)/4+2sum_(n=1)^oo((1/2),(n))(-15/64)^n{((2n),(n))(3pi)/8+sum_(k=0)^(n-1)((n),(k))(sin((n-k)(21pi)/8)-sin((n-k)(15pi)/8))/(n-k)}

Apply the Trigonometric sum-to-product formula:

L=(3pi)/4+sum_(n=1)^oo((1/2),(n))(-15/64)^n{((2n),(n))(3pi)/4+4sum_(k=0)^(n-1)((n),(k))(sin((n-k)(3pi)/4)cos((n-k)(9pi)/2))/(n-k)}

Since sin((n-k)(3pi)/4)cos((n-k)(9pi)/2) gives either 0 or +-1:

L=(3pi)/4+sum_(n=1)^oo((1/2),(n))(-15/64)^n{((2n),(n))(3pi)/4+4sum_(k=0)^(n-1)sum_(m=0)^n((n),(k))(-1)^m/(n-k)delta_((n-k)(4m+2))}

This can probably be further simplified.