What is the area enclosed by #r=-sin(theta+(11pi)/8) -theta/4# between #theta in [0,(pi)/2]#?

1 Answer
May 3, 2017

#A=pi/8+sqrt2/8+frac{pi^3}{768}-pi/8cos(15pi/8) + 1/4sin(15pi/8) - 1/4sin(11pi/8)#

#approx .3823#

Explanation:

#r=-sin(theta+frac{11pi}{8})-theta/4#

Area inside polar curves: #A=1/2int_(theta_1)^(theta_2)r^2 d theta#

#A=1/2int_(0)^(pi/2)(-sin(theta+(11pi)/8)-theta/4)^2 d theta#

(If this problem allows a calculator, use a graphing calculator here)
Expand what's inside the integral:
#1/2int_0^(pi/2)(sin^2(theta+(11pi)/8)+theta/2 sin(theta+(11pi)/8)+theta^2/16) d theta#

enter image source here

#=pi/8+sqrt2/8+frac{pi^3}{768}-pi/8cos(15pi/8) + 1/4sin(15pi/8) - 1/4sin(11pi/8)#

#approx .3823#