What is the average value of the function # f(x) = 4x ln (2x) # on the interval #[1,4]#?

1 Answer
Jan 10, 2017

#94/3ln(2)-5#

Explanation:

The average value #s# of a function #f# on the interval #[a,b]# can be found through the formula

#s=1/(b-a)int_a^bf(x)dx#

So here, the average value is equal to

#s=1/(4-1)int_1^4 4xln(2x)dx#

Let's first find this integral without the bounds.

#I=int4xln(2x)dx#

To do this integral, we'll need to use integration by parts. This technique takes the form #intudv=uv-intvdu#. Here, we want to choose a value of #u# that becomes simpler when differentiated and a value of #dv# that can be integrated.

For the given integral, let #u=ln(2x)# and #dv=4xcolor(white).dx#. Differentiating #u# and integrating #dv# we see that:

#{(u=ln(2x),=>,(du)/dx=1/x,=>,du=1/xdx),(dv=4xcolor(white).dx,=>,intdv=int4xcolor(white).dx,=>,v=2x^2):}#

So:

#I=uv-intvdu=2x^2ln(2x)-int2x^2 1/xdx#

Simplifying and integrating:

#I=2x^2ln(2x)-int2xcolor(white).dx=2x^2ln(2x)-x^2=x^2(2ln(2x)-1)#

This is without the constant go integration because we will use this to evaluate the integral. Returning to the average value, we see that

#s=1/(4-1)int_1^4 4xln(2x)dx=1/3[x^2(2ln(2x)-1)]_1^4#

Now evaluating in full:

#s=1/3 16(2ln(8)-1)-1/3 1(2ln(2)-1)#

#s=32/3ln(8)-16/3-2/3ln(2)+1/3#

Note that #ln(8)=ln(2^3)=3ln(2)#:

#s=32ln(2)-2/3ln(2)-16/3+1/3#

#s=94/3ln(2)-5#