What is the Cartesian form of #(45,(-13pi)/8)#?
1 Answer
Explanation:
The cartesian form of
Let's find
Note that
Hence:
#{ (cos(-(13pi)/4) = -sqrt(2)/2), (sin(-(13pi)/4) = sqrt(2)/2) :}#
Then note that:
#cos 2theta = 2cos^2 theta - 1 = 1 - 2sin^2 theta#
Hence:
#cos(-(13pi)/8) = +-sqrt((1+cos(-(13pi)/4))/2)#
#color(white)(cos(-(13pi)/8)) = +-1/2sqrt(2+2cos(-(13pi)/4))#
#color(white)(cos(-(13pi)/8)) = +-1/2sqrt(2-sqrt(2))#
#sin(-(13pi)/8) = +-sqrt((1-cos(-(13pi)/4))/2)#
#color(white)(sin(-(13pi)/8)) = +-1/2sqrt(2-2cos(-(13pi)/4))#
#color(white)(sin(-(13pi)/8)) = +-1/2sqrt(2+sqrt(2))#
Which signs are correct?
Note that
So
#{ (cos(-(13pi)/8) = 1/2sqrt(2-sqrt(2))), (sin(-(13pi)/8) = 1/2sqrt(2+sqrt(2))) :}#
So polar coordinates
#(45 cos(-(13pi)/8), 45 sin(-(13pi)/8))=(45/2sqrt(2-sqrt(2)), 45/2sqrt(2+sqrt(2)))#