What is the Cartesian form of #(r+3)^2 = sin^3theta+csctheta #?

1 Answer
Oct 11, 2016

We know the relations

#x=rcostheta and y =rsintheta#

Again #x^2+y^2=r^2#

where r and #theta# are the polar coordinate of a point having rectangular coordinate #(x,y)#

The given equation in polar form is

#(r+3)^2=sin^3theta+csctheta#

#=>r^2+6r+9=(r^3sin^3theta)/r^3+r/(rsintheta)#

#=>r^2+6r+9=y^3/r^3+r/y#

#=>yr^5+6yr^4+9yr^3=y^4+r^4#

#=>yr^5+(6y-1)r^4+9yr^3=y^4#

#=>y(x^2+y^2)^(5/2)+(6y-1)(x^2+y^2)^2+9y(x^2+y^2)^(3/2)=y^4#

This is the Cartesian form of the given polar equation.