What is the Cartesian form of #r-theta = -2sin^2theta-cot^3theta #?

1 Answer
Mar 20, 2016

Set:

#x=rcosθ#

#y=rsinθ#

Answer is:

#sqrt(x^2+y^2)-arccos(x/sqrt(x^2+y^2))=-2x^2/(x^2+y^2)-x^3/y^3#

Explanation:

According to the following picture:

https://www.mathsisfun.com/

Set:

#x=rcosθ#

#y=rsinθ#

So we have:

#cosθ=x/r#

#sinθ=y/r#

#θ=arccos(x/r)=arcsin(y/r)#

#r=sqrt(x^2+y^2)#

The equation becomes:

#r-θ=-2sin^2θ-cot^3θ#

#r-θ=-2sin^2θ-cos^3θ/sin^3θ#

#sqrt(x^2+y^2)-arccos(x/r)=-2x^2/r^2-(x^3/r^3)/(y^3/r^3)#

#sqrt(x^2+y^2)-arccos(x/r)=-2x^2/r^2-x^3/y^3#

#sqrt(x^2+y^2)-arccos(x/sqrt(x^2+y^2))=-2x^2/sqrt(x^2+y^2)^2-x^3/y^3#

#sqrt(x^2+y^2)-arccos(x/sqrt(x^2+y^2))=-2x^2/(x^2+y^2)-x^3/y^3#