What is the Cartesian form of #rtheta+r = 2costheta-cottheta*sectheta #? Trigonometry The Polar System Converting Between Systems 1 Answer Shiva Prakash M V Feb 18, 2018 #"Cartesian form of"# #rtheta+r=2costheta-cotthetaxxsectheta# # " is given by "# #(sqrt(x^2+y^2))(1+tan^-1(y/x))-(sqrt(x^2+y^2))/y# Explanation: #rtheta+r=2costheta-cotthetaxxsectheta# #x=rcostheta# #y=rsintheta# #r=sqrt(x^2+y^2)# #theta=tan^-1(y/x)# #tantheta=y/x# #costheta=x/r=x/sqrt(x^2+y^2)# #cottheta=1/tantheta=1/(y/x)=x/y# #sectheta=1/costheta=1/(x/sqrt(x^2+y^2))=(sqrt(x^2+y^2))/x# Thus, #rtheta+r=2costheta-cotthetaxxsectheta " becomes"# #(sqrt(x^2+y^2))(tan^-1(y/x))+(sqrt(x^2+y^2))=2xxx/sqrt(x^2+y^2)-x/yxx(sqrt(x^2+y^2))/x# # Simplifying #(sqrt(x^2+y^2))(1+tan^-1(y/x))-(sqrt(x^2+y^2))/y# Answer link Related questions How do you convert rectangular coordinates to polar coordinates? When is it easier to use the polar form of an equation or a rectangular form of an equation? How do you write #r = 4 \cos \theta # into rectangular form? What is the rectangular form of #r = 3 \csc \theta #? What is the polar form of # x^2 + y^2 = 2x#? How do you convert #r \sin^2 \theta =3 \cos \theta# into rectangular form? How do you convert from 300 degrees to radians? How do you convert the polar equation #10 sin(θ)# to the rectangular form? How do you convert the rectangular equation to polar form x=4? How do you find the cartesian graph of #r cos(θ) = 9#? See all questions in Converting Between Systems Impact of this question 1245 views around the world You can reuse this answer Creative Commons License