What is the complex conjugate of the square root of -7?

1 Answer
Sep 6, 2015

Answer:

I suppose: #-sqrt(7)i# and #+sqrt(7)i#

Explanation:

In your case you have:
#sqrt(-7)=sqrt(-1*7)=sqrt(7)i#
where #sqrt(-1)=i# is the Imaginary Unit.
The complex conjugate f your complex number:
#z=0+sqrt(7)i#
will be obteined chaging signs as:
#z=0+sqrt(7)i=+sqrt(7)i#
#z=0-sqrt(7)i-sqrt(7)i#